Sun Valley Water & Wastewater Project

Solutions and Advancements in Water and Wastewater Engineering

> Mohammad Alsabah Sara Bateman Adam Cordero Mary Strong

Project Understanding

Introduction

- Sun Valley Ranch: self-sustaining retreat owned by Christopher Fernandes
- Needs water and wastewater facilities

Background Information

- 10-acre
- SV population 300-350
- Sandy loam soil
- No exisiting infrastructure
- No relief over 5'

Figure 1: Horned Toad Found On-Site Source: Sara Bateman

Project Understanding

Client Requirements

- Non-intrusive
- Easy to incorporate for the average Arizona resident
- Inexpensive
- Meets Navajo County codes

Figure 1: Horned Toad Found On-Site Source: Sara Bateman

Evaluation of the Wastewater System Options

Criteria & Constraints	Weight	Stabilization Ponds		Composting Toilets & Graywater Reuse		Septic Tanks	
		Ranking	Score	Ranking	Score	Ranking	Score
Non-intrusive	0.10	1	0.10	2	0.20	1	0.10
Cost	0.25	2	0.50	2	0.75	2	0.50
Operation & Maintenance	0.15	1	0.15	1	0.15	3	0.45
Lifetime	0.05	3	0.15	3	0.15	3	0.15
Sustainability	0.05	3	0.15	3	0.15	3	0.15
Construction	0.05	3	0.15	3	0.15	2	0.10
Expansion	0.10	2	0.20	3	0.30	1	0.10
Startup & Shutdown	0.05	1	0.05	3	0.15	2	0.10
Effectiveness	0.20	2	0.40	2	0.40	3	0.60
Overall Scores		1.85		2.40		2.25	
Where: 1= poor, 2= sufficient, 3= very well Ranking*Weight = Score							

Evaluation of the Water System Options

Criteria & Constraints	Weight	Well		Importation	
		Ranking	Score	Ranking	Score
Non-intrusive	0.05	1	0.05	3	0.15
Cost	0.3	1	0.30	2	0.6
Operation & Maintenance	0.2	2	0.40	3	0.6
Lifetime	0.05	3	0.15	3	0.15
Sustainability	0.05	2	0.10	2	0.1
Construction	0.05	1	0.05	3	0.15
Expansion	0.2	1	0.20	2	0.4
Startup & Shutdown	0.1	2	0.20	3	0.3
0	1.45		2.45		
Where: 1= poor, 2= sufficient, 3= very well Ranking*Weight = Score					

Selected Alternatives

Importation

Rainwater Harvesting

Composting

Graywater Reuse

Figure 2: SVR Water & Wastewater Systems Layout

Importation

- Source: Holbrook
- Potable water that meets all federal and state laws
- Hiring local for water hauling service
- Will include:
 - Storage tank: 5000 gallons
 - Water tank: 1000 gallons

Figure 3: Importation Trailer & Tank [1]

Rainwater Harvesting

- Gravity fed system
- 1000 gallon tank
- Rainwater monthly yield =3039 gal
 - $R(in) * C * A(ft^2) * C_R = Y(gal)$
- Monthly landscape demand =1977gal
 - ET(in) * C * A(ft²) = D(gal)
- Cumulative storage

Figure 4: RW Harvesting Cumulative Storage

- 5 "Do it yourself" Models
 - Ventilation system
 - Polyethylene Barrel
 - Vector control
- System Sizing
 - Two Adults: 1 Active barrel +2 aging barrels=3 barrels Total

Figure 6: DIY Model Composting Toilet [2]

Figure 5: DIY Active & Aging Toilets [2]

• Indoor application

Figure 7: Above Ground Composting Barrel [2]

- System sizing
 - 2 adults require 3 barrels (1 active barrel + 2 aging barrels)
- Total Barrel Capacity=55 gal
- Effective capacity (9" freeboard) = 41 gal per barrel
 - 0.5 gal per person per day, 2 people
 - 41 days to fill barrel
- Design capacity- for active toilet
 - EC+0.5EC=62 days
 - Decomposition and drying of compost
- 4 months required for complete aging of compost

Figure 9: Compost [3]

Figure 5: DIY Active & Aging Toilets [2]

Figure 10: Dolly [4]

- Aeration in aging barrels
- Operation & maintenance
 - Odor control
 - Aeration

Figure 11: Air Flow in Aging Barrels[2]

Figure 12: Moth Balls Used for Odor Control [2]

Figure 13: Aeration Provided by Crank [2]

Cover Material

Figure 14: Cover Material Samples for Composting Toilets [2]

Material	Volume of Water Passed Through Strainer	Water Absorbed
Sawdust	1/3 cup	75%
Horse manure	1/3 cup	66%
Wood Shavings	2/3 cup	33%
Straw	2/3 cup	33%

- Urine diversion system
 - Includes urinals

Figure 15: Urine Diversion System [2]

Figure 16: Urinal [2]

Graywater Reuse

- Water from sinks, showers, and clothes washer
- Storage tank
- Sent to plants using dripirrigation system
- Fecal contamination concern

Figure 17: Gray Water Reuse in Sun Valley Ranch

Urine & Kitchen Sink Disposal

- Kitchen sink disposal
 - Composition
- Urine
 - Nitrogen & salt levels
 - Required dilution 10:1
- Application to plants

Figure 18: Urine & Kitchen Sink Water Handling

Project Cost Analysis

Project Costs						
1.0 Personal	Classification	Hours	Rate, \$/hr	Cost, \$		
	PM	90.5	92	8,326		
	ENG	89.5	132	11,814		
	LAB	71.5	63	4,505		
	AA	128.5	40	5,140		
	Total Personnel	380		29,784		
2.0 Travel	Site Visit	\$0.56/mi				
	1 meeting @ 100 mi/meeting			56		
3.0 TOTAL				\$29,840		

Implementation Cost Analysis

Cost Analysis						
	Quantity	Price	Capital		Annual	
Importation				Importation		
On-site storage tank	1	\$2,385	\$2,385	Transportation	\$1,480	
Water hauling tank	1	\$680	\$680	Water hauling service	\$1,056	
Trailer	1	\$5,000	\$5,000	Water	\$177	
Rainwater harvesting				Rainwater harvesting		
Barrel	1	\$875	\$875	Operation & maintenance	\$264	
Composting toilets				Composting toilets		
DIY toilets	5	\$325	\$1,625	Operation & maintenance	\$528	
Urine diversion system	5	\$40	\$200			
Installation	5	\$60	\$300			
Graywater storage tank	1	\$310	\$310			
		TOTAL:	\$11,375	TOTAL:	\$3,505	
Total capital & annual cost: \$14,880						

Impacts

- Increasing population size in Sun Valley
- Norms associated with low tech ww handling, user-friendly
- National, state, and county regulations
- Ensuring health & safety
- Potential for worldwide use

Figure 19: Influence [5]

Acknowledgments

• Technical Adivsor: Dr. Charles Schlinger

Client: Christopher Fernandes

[1] (2007). WH1000 Gallon Tank Heavy Duty Water Hauler Trailer. [Online]. Available: http://www.texasbraggtrailers.com/images/trailers/water-haulers-1000-gallon-water-tank-large.jpg

[2] (2013). Barrel Composting Toilet System: Capacity Calculations and System Sizing. [Online]. Available FTP:http://www.omick.net/composting_toilets/barrel_toilet_capacity.htm

[3] (2015). Mushroom compost. [Online]. Available: https://www.rhs.org.uk/advice/profile?PID=294

[4] (2015). *Hand Trucks & Dollies.* [Online]. Available: http://www.officedepot.com/a/browse/hand-trucks-and-dollies/N=5+3940/

[5] (2012). Circle of Influence. [Online]. Available: http://conniesinsights.weebly.com/circle-of-influence.html

[6] City of Holbrook. (2013). 2013 Holbrook Annual Drinking Water Quality Report. [Online]. Available: http://www.ci.holbrook.az.us/index.asp?SEC=D155A727-B339-4751-B896-156F36372EB0&DE=B84E9068-836E-4442-8BF2-2B70256767BC&Type=B_BASIC